182 research outputs found

    A Covert Channel Using Named Resources

    Full text link
    A network covert channel is created that uses resource names such as addresses to convey information, and that approximates typical user behavior in order to blend in with its environment. The channel correlates available resource names with a user defined code-space, and transmits its covert message by selectively accessing resources associated with the message codes. In this paper we focus on an implementation of the channel using the Hypertext Transfer Protocol (HTTP) with Uniform Resource Locators (URLs) as the message names, though the system can be used in conjunction with a variety of protocols. The covert channel does not modify expected protocol structure as might be detected by simple inspection, and our HTTP implementation emulates transaction level web user behavior in order to avoid detection by statistical or behavioral analysis.Comment: 9 page

    A scalable agent-based network measurement infrastructure

    Get PDF
    ©2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.The rapid growth of computer networks has made the process of understanding the interaction among network components more challenging than ever. The increase in the size of networks is accompanied by the more demanding use of networks by distributed applications that critically rely on the system to function well. Consequently, monitoring the health and stability of networks has become crucial. Tools and probes to measure the performance of networks for the purpose of management, fault diagnosis, or performance evaluation have been developed by several research groups. There is not yet, however, a measurement infrastructure which offers systematic control and management of measurement efforts and performance data focused on supporting distributed network-aware applications. This work addresses the implementation of a scalable and extensible network measurement infrastructure used to capture network state to improve the performance of a distributed application

    An open system transportation security sensor network: field trial experiences

    Get PDF
    Abstract Cargo shipments are subject to hijack, theft, or tampering. Furthermore, cargo shipments are at risk of being used to transport contraband, potentially resulting in fines to shippers. The Transportation Security Sensor Network (TSSN), which is based on open software systems and Service Oriented Architecture (SOA) principles, has been developed to mitigate these risks. Using commercial off-the-shelf (COTS) hardware, the TSSN is able to detect events and report those relevant to appropriate decision makers. However, field testing is required to validate the system architecture as well as to determine if the system can provide timely event notification. Field experiments were conducted to assess the TSSN's suitability for monitoring rail-borne cargo. Log files were collected from these experiments and postprocessed. We present the TSSN architecture and results of field experiments, including the time taken to report events using the TSSN as well as on the interaction between various components of the TSSN. These results show that the TSSN architecture can be used to monitor rail-borne cargo. i

    The Rapidly Deployable Radio Network

    Get PDF
    The Rapidly Deployable Radio Network (RDRN) is an architecture and experimental system to develop and evaluate hardware and software components suitable for implementing mobile, rapidly deployable, and adaptive wireless communications systems. The driving application for the RDRN is the need to quickly establish a communications infrastructure following a natural disaster, during a law enforcement activity, or rapid deployment of military force. The RDRN project incorporates digitally controlled antenna beams, programmable radios, adaptive protocols at the link layer, and mobile node management. This paper describes the architecture for the Rapidly Deployable Radio Network and a prototype system built to evaluate key system components

    Segregation of object and background motion in the retina

    Get PDF
    An important task in vision is to detect objects moving within a stationary scene. During normal viewing this is complicated by the presence of eye movements that continually scan the image across the retina, even during fixation. To detect moving objects, the brain must distinguish local motion within the scene from the global retinal image drift due to fixational eye movements. We have found that this process begins in the retina: a subset of retinal ganglion cells responds to motion in the receptive field centre, but only if the wider surround moves with a different trajectory. This selectivity for differential motion is independent of direction, and can be explained by a model of retinal circuitry that invokes pooling over nonlinear interneurons. The suppression by global image motion is probably mediated by polyaxonal, wide-field amacrine cells with transient responses. We show how a population of ganglion cells selective for differential motion can rapidly flag moving objects, and even segregate multiple moving objects

    Communications Biophysics

    Get PDF
    Contains reports on seven research projects split into three sections, with research objective for the final section.National Institutes of Health (Grant 2 PO1 NS 13126)National Institutes of Health (Grant 5 RO1 NS 18682)National Institutes of Health (Grant 1 RO1 NS 20322)National Institutes of Health (Grant 1 RO1 NS 20269)National Institutes of Health (Grant 5 T32 NS 07047)Symbion, Inc.National Institutes of Health (Grant 5 RO1 NS10916)National Institutes of Health (Grant 1 RO1 NS16917)National Science Foundation (Grant BNS83-19874)National Science Foundation (Grant BNS83-19887)National Institutes of Health (Grant 5 RO1 NS12846)National Institutes of Health (Grant 5 RO1 NS21322)National Institutes of Health (Grant 5 RO1 NS 11080
    corecore